

Cisco Systems Confidential

Voice Is Not A Network

 Complete understanding of Voice Application fundamentals helps us to design and build better Networks

1985 05f9 c1 © 1999 Cisco Systems Inc.

www.cisco.com

Objective

To Prepare the Data
Communications Professional
for Voice and Data Network
Integration by Providing Voice
Technology Fundamentals

401 0985_05f9_c1 © 1999, Cisco Systems, Ir www.cisco.com

Agenda

- Basic Analog Telephony
- Basic Digital Telephony
- Voice Coding and Compression Techniques
- Voice Transport and Delay
- Supplemental Slides: Digital Voice Signaling Techniques

0985 05f9 c1 © 1999 Cieco Systems Inc.

www.cisco.com

Telephony Equipment

- Telephone set
- Key system

Optimizes use of telephone sets to lines

Mechanical to electronic

Two to ten telephone handsets is typical

PBX (Private Branch Exchange)

Advanced features and call routing
Tens to hundreds of telephone handsets

Central office switch

401 0985_05f9_c1 © 1999, Cisco Systems, Inc. www.cisco.com

Cisco Systems Confidential

Cisco Systems Confidential

Cisco Systems Confidential

Cisco Systems Confidential

E&M Signaling

PBXs, switches

Separate signaling leads for each direction

E-Lead (inbound direction)

M-Lead (outbound direction)

Allows independent signaling

State	E-Lead	M-Lead
On-Hook	Open	Ground
Off-Hook	Ground	Battery Voltage

401 0985 05f9 c1 © 1999 Cisco Systems Inc.

Signaling and Addressing

Dial Pulsa

DTMF

ISDN

Digital Transmission "Out-of-Band" Message-Based Signaling

401 0985_05f9_c1 © 1999, Cisco Systems, Inc www.cisco.com

Cisco Systems Confidential

Cisco Systems Confidential

Cisco Systems Confidential

Cisco Systems Confidential

Ways to Defeat Echo

- Increase the loss in the echo path
 Can often be the solution
 - Disadvantage: static setting and reduces the signal strength of the speaker
- Echo suppresser
 - Acts like a noise gate, effectively making communications half-duplex

401 0985_05f9_c1 © 1999, Cisco Systems, Inc. www.cisco.com

Summary

- Information exchange based on voltage, current flow, grounding, and so on
- Analog voice technology dates back to the late 1800s

401 0985_05/9_c1 © 1999, Cisco Systems, Inc.

Agenda

- Basic Analog Telephony
- Basic Digital Telephony
- Voice Coding and Compression Techniques
- Voice Transport and Delay
- Supplemental Slides: Digital Voice Signaling Techniques

0985 05f9 c1 © 1999 Cieco Systems Inc

www.cisco.com

Digital Telephony

Digital Trunking

Switch

Analog Loop

Digital Network

A to D

Conversion

Digital Loop Digital Network

ISDN

WWW.cisco.com

24

WWW.cisco.com

24

Cisco Systems Confidential

Cisco Systems Confidential

THE REAL PROPERTY.	10 15 15				perfra				33 Sales
		200					N. D. SA	NAME OF TAXABLE PARTY.	22/240
	S Bits		S	Bit Use in Each Channel Time Slot		Signaling—Bit Use Options			
Frame Number	Fe	DL	вс	Traffic	Signaling	T	2	4	16
1 2	_ _	m -	_ C1						
- 3 4	_ 0	m -	- -						
5	(/ - //	m	_ C2	Di- 4 7	Bit 8				
6 7	- (// - ///	– m	-	Bits 1–7	Bit 8	*	A	A	A
8	0	_	-						
9 10	_	m –	_ C3						
11	-	m	-						
12 13	1	_	_	Bits 1–7	Bit 8	*	Α	В	В
13 14	_	m -	C4						
15	-	m	-						
16 17	0	m	_						
18	_	_	C5	Bits 1-7	Bit 8	*	Α	Α	С
19	-	m	-						
20 21	1	_	-						
21 22	_	m -	C6						
23	14	m	(74)						
24	1	_	_	Bits 1-7	Bit 8	*	Α	В	D

Cisco Systems Confidential

Cisco Systems Confidential

Agenda

- Basic Analog Telephony
- Basic Digital Telephony
- Voice Coding and Compression Techniques
- Voice Transport and Delay
- Supplemental Slides: Digital Voice Signaling Techniques

401 0985 05f9 c1 © 1999 Cisco Systems Inc. www.cisco.com

45

Voice Coding and Compression

- Speech-coding schemes
- Subjective impairment analysis: mean opinion scores
- Digitizing voice
- Voice compression

ADPCM

CELP (LD-CELP and CSA-CELP)

Silence removal techniques (DSI using VAD)

401 0985_05f9_c1 © 1999, Cisco Systems, Inc. www.cisco.com

Cisco Systems Confidential

Voice Compression

- Objective: reduce bandwidth consumption
 Compression algorithms are optimized for voice
 Unlike data compression: these are "loose"
- Drawbacks/tradeoffs

Quantization distortion

Tandem switching degradation

Delay (echo)

401 0985_05f9_c1 © 1999, Cisco Systems, Inc. www.cisco.com

Voice Compression—ADPCM

 Adaptive Differential Pulse Code Modulation

Waveform coding scheme

Adaptive: automatic companding

Differential: encode the changes

between samples only

Rates and bits per sample:

32 Kbps = 8 Kbps x 4 bits/sample

24 Kbps = 8 Kbps x 3 bits/sample

16 Kbps = 8 Kbps x 2 bits/sample

0985_05f9_c1 © 1999, Cisco Systems, Inc.

www.cisco.com

55

Voice Compression—CELP

- Code excited linear predictive
- Very high voice quality at low-bit rates, processor intensive, use of DSPs
- G.728: LD-CELP—16 Kbps
- G.729: CSA-CELP—8 Kbps

G.729a variant— "stripped down" 8 kbps (with a noticeable quality difference) to reduce processing load, allows two voice channels encoded per DSP

401 0985_05f9_c1 © 1999, Cisco Systems, Inc. www.cisco.com

Cisco Systems Confidential

Digital Speech Interpolation (DSI)

- Voice Activity Detection (VAD)
- Removal of voice silence
- Examines voice for power, change of power, frequency and change of frequency
- All factors must indicate voice "fits into the window" before cells are constructed
- Automatically disabled for fax/modem

1985 05f9 c1 © 1999 Cieco Systems Inc

www.cisco.com

Bandwidth Requirements

Voice Band Traffic

Encoding/ Compression	Result Bit Rate					
G.711 PCM A-Law/ <i>µ</i> -Law	64 kbps (DS0)					
G.726 ADPCM	16, 24, 32, 40 kbps					
G.729 CS-ACELP	8 kbps					
G.728 LD-CELP	16 kbps					
G.723.1 CELP	6.3/5.3 kbps Variable					

401 0985 05f9 c1 © 1999 Cisco Systems Inc. www.cisco.com

Agenda

- Basic Analog Telephony
- Basic Digital Telephony
- Voice Coding and Compression Techniques
- Voice Transport and Delay
- Supplemental Slides: Digital Voice Signaling Techniques

401 0985_05f9_c1 © 1999, Cisco Systems, Inc. www.cisco.com

Voice Network Transport

 Voice Network Transport is typically TDM circuit-based:

T1/E1
DS3/E3
SONET (OC-3, OC-12, etc.)

But can also be packet-based:

ATM Frame Relay IP

401

www.cisco.com

Data Is Overtaking Voice Evolution from TDM-based Relative transport to packets/cells Load or a combination Data Is 23x 30 Voice 👂 25 Traffic 20 15 Data Is 5x 10 **Voice Traffic** Voice 01990 1995 2005 2000 Year Source: Electronicast 401 0985_05f9_c1 © 1999, Cisco Systems, Inc. www.cisco.com

Cisco Systems Confidential

Cisco Systems Confidential

Cisco Systems Confidential

An Example

• Assumptions:

We have eight trunks

We are going to use CS-ACELP that uses 8 Kbps per voice channel

Our uplink is 64 Kbps

Voice is using a high priority queue and no other traffic is being used

401 0985_05f9_c1 © 1999, Cisco Systems, Inc. www.cisco.com

Cisco Systems Confidential

Variable Delay Calculation

- We have eight trunks, so in the worst case we will have to wait for seven voice calls prior to ours
- To put one voice frame out on a 64Kbps link takes 3msec
- 1 byte over a 64Kbps link takes 125 microseconds.
 We have a 20 byte frame relay frame with 4 bytes of overhead.
 125 * 24 = 3000 usecs or 3 msec
- Does not factor in waiting for a possible data packet or the impact of variable sized frames
- Assumes voice prioritization of frames

Cisco Systems Confidential

Other Useful Voice QoS Schemes in IP

- Custom Queuing, Priority Queuing and Weighted Fair Queuing (WFQ)
- Resource Reservation Protocol (RSVP)
- IP Precedence Bit setting in the ToS Field of the IP Header
- Compressed Real Time Protocol (CRTP)

401

www.cisco.com

79

Summary

- Voice traffic engineering principles still apply
- Packet-based voice trunks can provide efficiency with high quality if properly engineered
- The biggest impact on voice quality over a data network will be as a result of the delay and delay variation

401 0985_05f9_c1 © 1999, Cisco Systems, Inc.

www.cisco.com

Repeat: Voice Is Not A Network

- Voice is an <u>Application</u>
- Complete understanding of Voice Application fundamentals helps us to design and build better Networks

401 0985 05f9 c1 © 1999 Cieco Systems Inc. www.cisco.com

81

Agenda

- Basic Analog Telephony
- Basic Digital Telephony
- Voice Coding and Compression Techniques
- Voice Transport and Delay
- Supplemental Slides: Digital Voice Signaling Techniques

401 0985_05f9_c1 © 1999, Cisco Systems, Inc. www.cisco.com

Digital Voice Signaling Techniques

- ISDN
- Q.930/Q.931
- Signaling System 7
- Voice addressing

1985 05f9 c1 © 1999 Cisco Systems Inc.

www.cisco.com

83

ISDN

Integrated Services Digital Network

Part of a network architecture

Definition for the access to the network

Allows access to multiple services through a single access

Standards-based

ITU recommendations

Proprietary implementations

401 0985_05f9_c1 © 1999, Cisco Systems, Inc. www.cisco.com

Terminology (Cont.)

D channel "signaling channel"

16 Kbps or 64 Kbps

Carries instructions between customer equipment and network

Carries information

Can also carry packet switch data (X.25) for the public packet switched network

401 0985 05f9 c1 © 1999 Cisco Systems Inc. www.cisco.com

87

Terminology (Cont.)

 BRA/BRI (Basic Rate Access/ Basic Rate Interface)

2B + D

2 x 64 Kbps + 16 Kbps = 144 Kbps (not including overhead)

Designed to operate using the average local copper pair

401 0985_05f9_c1 © 1999, Cisco Systems, Inc. www.cisco.com

Terminology (Cont.)

 PRA/PRI (Primary Rate Access/Primary Rate Interface)

23 B + D

23 x 64 Kbps + 64 Kbps (D Channel) + 8 Kbps (Frame Alignment bit) = 1.544 Mbps

Designed to operate using T1/E1

In E1 environments: 30 B + D

1995 05f9 c1 © 1999 Cieco Systems Inc.

www.cisco.com

ISDN Reference Points

TE1

TE1

ST

NT1

U

Carrier

TE2

R

TA

S

Customer Premises

Local Loop

401

0885, 059, c1

0 1999, Ciaco Systems, Inc.

Cisco Systems Confidential

ISDN Reference Points

NT1

Terminates local loop

Coding and transmission conversion

Maintenance and performance monitoring

Functions as a CSU

1985 05f9 c1 © 1999 Cisco Systems Inc

www.cisco.com

91

ISDN Reference Points (Cont.)

TE1

ISDN compatible equipment

TE2

Non-ISDN compatible equipment Requires TA

TA

Interfaces available for different TE2 E.g. RS-232, X.21, V.35, PC-Bus, video, etc.

401 0985_05f9_c1 © 1999, Cisco Systems, Inc. www.cisco.com

ISDN Reference Points (Cont.)

NT2

Typically a PBX
Provides switching functions
Handles Layer 2 and Layer 3 protocols

401 0985 05f9 c1 © 1999 Cisco Systems Inc. www.cisco.com

Access to ISDN

At the S-reference point:

RJ-45 (receive and transmit pair) Optional power can be provided for TE devices

Distance:

1 Km (1 x TE only), 200 m (8 x TE), 500 m (4 x TE)

When more than one TE, wires act as a bus

CSMA/CD

Limitation: cannot have an extension phone

401 0985_05f9_c1 © 1999, Cisco Systems, Inc. www.cisco.com

Access to ISDN

At the U-Reference point (BRA)

Standards differ NA, France, UK vs. Germany vs. Japan

In North America, designed to use as much of existing copper plant available

Two wire, unloaded local loops are 99% of total

Up to 5.5 Km loop length

At the U-Reference point (PRA)

T1/E1 standard

1985 05f9 c1 © 1999 Cieco Systems Inc

www.cisco.com

95

D Channel

- ISDN Access Protocols are carried in the D channel
- Layer 2 and Layer 3 protocol specifications

Protocol specifications are identical for BRA and PRA

Layer 2, Q.920/921, LAP-D

Supports the communications for Layer 3

Maintains the connections between devices

Layer 3, Q.930/931

Call setup, call supervision, call tear down, and supplementary services

Uses standard set of messages to communicate

401 0985_05f9_c1 © 1999, Cisco Systems, Inc. www.cisco.com

Cisco Systems Confidential

Cisco Systems Confidential

Cisco Systems Confidential

Agenda

- Basic Analog Telephony
- Basic Digital Telephony
- Voice Coding and Compression Techniques
- Voice Transport and Delay
- Supplemental Slides: Digital Voice Signaling Techniques

1985 05f9 c1 © 1999 Cieco Systems Inc

www.cisco.com

103

Thank You!

- Q & A
- Please Fill Out Evaluation Forms
- THANK YOU!

401 0985_05f9_c1 © 1999, Cisco Systems, Inc. www.cisco.com

Cisco Systems Confidential